\(\int (f+g x)^4 (a+b \log (c (d+e x)^n)) \, dx\) [35]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 178 \[ \int (f+g x)^4 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx=-\frac {b (e f-d g)^4 n x}{5 e^4}-\frac {b (e f-d g)^3 n (f+g x)^2}{10 e^3 g}-\frac {b (e f-d g)^2 n (f+g x)^3}{15 e^2 g}-\frac {b (e f-d g) n (f+g x)^4}{20 e g}-\frac {b n (f+g x)^5}{25 g}-\frac {b (e f-d g)^5 n \log (d+e x)}{5 e^5 g}+\frac {(f+g x)^5 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g} \]

[Out]

-1/5*b*(-d*g+e*f)^4*n*x/e^4-1/10*b*(-d*g+e*f)^3*n*(g*x+f)^2/e^3/g-1/15*b*(-d*g+e*f)^2*n*(g*x+f)^3/e^2/g-1/20*b
*(-d*g+e*f)*n*(g*x+f)^4/e/g-1/25*b*n*(g*x+f)^5/g-1/5*b*(-d*g+e*f)^5*n*ln(e*x+d)/e^5/g+1/5*(g*x+f)^5*(a+b*ln(c*
(e*x+d)^n))/g

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {2442, 45} \[ \int (f+g x)^4 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx=\frac {(f+g x)^5 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g}-\frac {b n (e f-d g)^5 \log (d+e x)}{5 e^5 g}-\frac {b n x (e f-d g)^4}{5 e^4}-\frac {b n (f+g x)^2 (e f-d g)^3}{10 e^3 g}-\frac {b n (f+g x)^3 (e f-d g)^2}{15 e^2 g}-\frac {b n (f+g x)^4 (e f-d g)}{20 e g}-\frac {b n (f+g x)^5}{25 g} \]

[In]

Int[(f + g*x)^4*(a + b*Log[c*(d + e*x)^n]),x]

[Out]

-1/5*(b*(e*f - d*g)^4*n*x)/e^4 - (b*(e*f - d*g)^3*n*(f + g*x)^2)/(10*e^3*g) - (b*(e*f - d*g)^2*n*(f + g*x)^3)/
(15*e^2*g) - (b*(e*f - d*g)*n*(f + g*x)^4)/(20*e*g) - (b*n*(f + g*x)^5)/(25*g) - (b*(e*f - d*g)^5*n*Log[d + e*
x])/(5*e^5*g) + ((f + g*x)^5*(a + b*Log[c*(d + e*x)^n]))/(5*g)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2442

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f + g*
x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])/(g*(q + 1))), x] - Dist[b*e*(n/(g*(q + 1))), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {(f+g x)^5 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g}-\frac {(b e n) \int \frac {(f+g x)^5}{d+e x} \, dx}{5 g} \\ & = \frac {(f+g x)^5 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g}-\frac {(b e n) \int \left (\frac {g (e f-d g)^4}{e^5}+\frac {(e f-d g)^5}{e^5 (d+e x)}+\frac {g (e f-d g)^3 (f+g x)}{e^4}+\frac {g (e f-d g)^2 (f+g x)^2}{e^3}+\frac {g (e f-d g) (f+g x)^3}{e^2}+\frac {g (f+g x)^4}{e}\right ) \, dx}{5 g} \\ & = -\frac {b (e f-d g)^4 n x}{5 e^4}-\frac {b (e f-d g)^3 n (f+g x)^2}{10 e^3 g}-\frac {b (e f-d g)^2 n (f+g x)^3}{15 e^2 g}-\frac {b (e f-d g) n (f+g x)^4}{20 e g}-\frac {b n (f+g x)^5}{25 g}-\frac {b (e f-d g)^5 n \log (d+e x)}{5 e^5 g}+\frac {(f+g x)^5 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 315, normalized size of antiderivative = 1.77 \[ \int (f+g x)^4 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx=\frac {e x \left (60 a e^4 \left (5 f^4+10 f^3 g x+10 f^2 g^2 x^2+5 f g^3 x^3+g^4 x^4\right )-b n \left (60 d^4 g^4-30 d^3 e g^3 (10 f+g x)+10 d^2 e^2 g^2 \left (60 f^2+15 f g x+2 g^2 x^2\right )-5 d e^3 g \left (120 f^3+60 f^2 g x+20 f g^2 x^2+3 g^3 x^3\right )+e^4 \left (300 f^4+300 f^3 g x+200 f^2 g^2 x^2+75 f g^3 x^3+12 g^4 x^4\right )\right )\right )+60 b d^2 g \left (-10 e^3 f^3+10 d e^2 f^2 g-5 d^2 e f g^2+d^3 g^3\right ) n \log (d+e x)+60 b e^4 \left (5 d f^4+e x \left (5 f^4+10 f^3 g x+10 f^2 g^2 x^2+5 f g^3 x^3+g^4 x^4\right )\right ) \log \left (c (d+e x)^n\right )}{300 e^5} \]

[In]

Integrate[(f + g*x)^4*(a + b*Log[c*(d + e*x)^n]),x]

[Out]

(e*x*(60*a*e^4*(5*f^4 + 10*f^3*g*x + 10*f^2*g^2*x^2 + 5*f*g^3*x^3 + g^4*x^4) - b*n*(60*d^4*g^4 - 30*d^3*e*g^3*
(10*f + g*x) + 10*d^2*e^2*g^2*(60*f^2 + 15*f*g*x + 2*g^2*x^2) - 5*d*e^3*g*(120*f^3 + 60*f^2*g*x + 20*f*g^2*x^2
 + 3*g^3*x^3) + e^4*(300*f^4 + 300*f^3*g*x + 200*f^2*g^2*x^2 + 75*f*g^3*x^3 + 12*g^4*x^4))) + 60*b*d^2*g*(-10*
e^3*f^3 + 10*d*e^2*f^2*g - 5*d^2*e*f*g^2 + d^3*g^3)*n*Log[d + e*x] + 60*b*e^4*(5*d*f^4 + e*x*(5*f^4 + 10*f^3*g
*x + 10*f^2*g^2*x^2 + 5*f*g^3*x^3 + g^4*x^4))*Log[c*(d + e*x)^n])/(300*e^5)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(588\) vs. \(2(164)=328\).

Time = 1.62 (sec) , antiderivative size = 589, normalized size of antiderivative = 3.31

method result size
parallelrisch \(\frac {300 b d \,e^{4} f^{4} n +300 x \ln \left (c \left (e x +d \right )^{n}\right ) b \,e^{5} f^{4}-300 x b \,e^{5} f^{4} n -300 \ln \left (c \left (e x +d \right )^{n}\right ) b d \,e^{4} f^{4}+60 \ln \left (e x +d \right ) b \,d^{5} g^{4} n +60 x^{5} \ln \left (c \left (e x +d \right )^{n}\right ) b \,e^{5} g^{4}-12 x^{5} b \,e^{5} g^{4} n +300 x^{4} a \,e^{5} f \,g^{3}+600 x^{3} a \,e^{5} f^{2} g^{2}+600 x^{2} a \,e^{5} f^{3} g +60 x^{5} a \,e^{5} g^{4}+600 \ln \left (e x +d \right ) b d \,e^{4} f^{4} n +15 x^{4} b d \,e^{4} g^{4} n -75 x^{4} b \,e^{5} f \,g^{3} n +600 x^{3} \ln \left (c \left (e x +d \right )^{n}\right ) b \,e^{5} f^{2} g^{2}-20 x^{3} b \,d^{2} e^{3} g^{4} n -200 x^{3} b \,e^{5} f^{2} g^{2} n +600 x^{2} \ln \left (c \left (e x +d \right )^{n}\right ) b \,e^{5} f^{3} g +30 x^{2} b \,d^{3} e^{2} g^{4} n -300 x^{2} b \,e^{5} f^{3} g n -60 x b \,d^{4} e \,g^{4} n +300 x^{4} \ln \left (c \left (e x +d \right )^{n}\right ) b \,e^{5} f \,g^{3}-300 b \,d^{4} e f \,g^{3} n +600 b \,d^{3} e^{2} f^{2} g^{2} n -300 a d \,e^{4} f^{4}-600 b \,d^{2} e^{3} f^{3} g n +300 x a \,e^{5} f^{4}-600 x b \,d^{2} e^{3} f^{2} g^{2} n +600 x b d \,e^{4} f^{3} g n -300 \ln \left (e x +d \right ) b \,d^{4} e f \,g^{3} n +600 \ln \left (e x +d \right ) b \,d^{3} e^{2} f^{2} g^{2} n +100 x^{3} b d \,e^{4} f \,g^{3} n -150 x^{2} b \,d^{2} e^{3} f \,g^{3} n +300 x^{2} b d \,e^{4} f^{2} g^{2} n +300 x b \,d^{3} e^{2} f \,g^{3} n -600 \ln \left (e x +d \right ) b \,d^{2} e^{3} f^{3} g n +60 b \,d^{5} g^{4} n}{300 e^{5}}\) \(589\)
risch \(\text {Expression too large to display}\) \(1105\)

[In]

int((g*x+f)^4*(a+b*ln(c*(e*x+d)^n)),x,method=_RETURNVERBOSE)

[Out]

1/300*(300*b*d*e^4*f^4*n+300*x*ln(c*(e*x+d)^n)*b*e^5*f^4-300*x*b*e^5*f^4*n-300*ln(c*(e*x+d)^n)*b*d*e^4*f^4+60*
ln(e*x+d)*b*d^5*g^4*n+60*x^5*ln(c*(e*x+d)^n)*b*e^5*g^4-12*x^5*b*e^5*g^4*n+300*x^4*a*e^5*f*g^3+600*x^3*a*e^5*f^
2*g^2+600*x^2*a*e^5*f^3*g+60*x^5*a*e^5*g^4+600*ln(e*x+d)*b*d*e^4*f^4*n+15*x^4*b*d*e^4*g^4*n-75*x^4*b*e^5*f*g^3
*n+600*x^3*ln(c*(e*x+d)^n)*b*e^5*f^2*g^2-20*x^3*b*d^2*e^3*g^4*n-200*x^3*b*e^5*f^2*g^2*n+600*x^2*ln(c*(e*x+d)^n
)*b*e^5*f^3*g+30*x^2*b*d^3*e^2*g^4*n-300*x^2*b*e^5*f^3*g*n-60*x*b*d^4*e*g^4*n+300*x^4*ln(c*(e*x+d)^n)*b*e^5*f*
g^3-300*b*d^4*e*f*g^3*n+600*b*d^3*e^2*f^2*g^2*n-300*a*d*e^4*f^4-600*b*d^2*e^3*f^3*g*n+300*x*a*e^5*f^4-600*x*b*
d^2*e^3*f^2*g^2*n+600*x*b*d*e^4*f^3*g*n-300*ln(e*x+d)*b*d^4*e*f*g^3*n+600*ln(e*x+d)*b*d^3*e^2*f^2*g^2*n+100*x^
3*b*d*e^4*f*g^3*n-150*x^2*b*d^2*e^3*f*g^3*n+300*x^2*b*d*e^4*f^2*g^2*n+300*x*b*d^3*e^2*f*g^3*n-600*ln(e*x+d)*b*
d^2*e^3*f^3*g*n+60*b*d^5*g^4*n)/e^5

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 471 vs. \(2 (164) = 328\).

Time = 0.32 (sec) , antiderivative size = 471, normalized size of antiderivative = 2.65 \[ \int (f+g x)^4 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx=-\frac {12 \, {\left (b e^{5} g^{4} n - 5 \, a e^{5} g^{4}\right )} x^{5} - 15 \, {\left (20 \, a e^{5} f g^{3} - {\left (5 \, b e^{5} f g^{3} - b d e^{4} g^{4}\right )} n\right )} x^{4} - 20 \, {\left (30 \, a e^{5} f^{2} g^{2} - {\left (10 \, b e^{5} f^{2} g^{2} - 5 \, b d e^{4} f g^{3} + b d^{2} e^{3} g^{4}\right )} n\right )} x^{3} - 30 \, {\left (20 \, a e^{5} f^{3} g - {\left (10 \, b e^{5} f^{3} g - 10 \, b d e^{4} f^{2} g^{2} + 5 \, b d^{2} e^{3} f g^{3} - b d^{3} e^{2} g^{4}\right )} n\right )} x^{2} - 60 \, {\left (5 \, a e^{5} f^{4} - {\left (5 \, b e^{5} f^{4} - 10 \, b d e^{4} f^{3} g + 10 \, b d^{2} e^{3} f^{2} g^{2} - 5 \, b d^{3} e^{2} f g^{3} + b d^{4} e g^{4}\right )} n\right )} x - 60 \, {\left (b e^{5} g^{4} n x^{5} + 5 \, b e^{5} f g^{3} n x^{4} + 10 \, b e^{5} f^{2} g^{2} n x^{3} + 10 \, b e^{5} f^{3} g n x^{2} + 5 \, b e^{5} f^{4} n x + {\left (5 \, b d e^{4} f^{4} - 10 \, b d^{2} e^{3} f^{3} g + 10 \, b d^{3} e^{2} f^{2} g^{2} - 5 \, b d^{4} e f g^{3} + b d^{5} g^{4}\right )} n\right )} \log \left (e x + d\right ) - 60 \, {\left (b e^{5} g^{4} x^{5} + 5 \, b e^{5} f g^{3} x^{4} + 10 \, b e^{5} f^{2} g^{2} x^{3} + 10 \, b e^{5} f^{3} g x^{2} + 5 \, b e^{5} f^{4} x\right )} \log \left (c\right )}{300 \, e^{5}} \]

[In]

integrate((g*x+f)^4*(a+b*log(c*(e*x+d)^n)),x, algorithm="fricas")

[Out]

-1/300*(12*(b*e^5*g^4*n - 5*a*e^5*g^4)*x^5 - 15*(20*a*e^5*f*g^3 - (5*b*e^5*f*g^3 - b*d*e^4*g^4)*n)*x^4 - 20*(3
0*a*e^5*f^2*g^2 - (10*b*e^5*f^2*g^2 - 5*b*d*e^4*f*g^3 + b*d^2*e^3*g^4)*n)*x^3 - 30*(20*a*e^5*f^3*g - (10*b*e^5
*f^3*g - 10*b*d*e^4*f^2*g^2 + 5*b*d^2*e^3*f*g^3 - b*d^3*e^2*g^4)*n)*x^2 - 60*(5*a*e^5*f^4 - (5*b*e^5*f^4 - 10*
b*d*e^4*f^3*g + 10*b*d^2*e^3*f^2*g^2 - 5*b*d^3*e^2*f*g^3 + b*d^4*e*g^4)*n)*x - 60*(b*e^5*g^4*n*x^5 + 5*b*e^5*f
*g^3*n*x^4 + 10*b*e^5*f^2*g^2*n*x^3 + 10*b*e^5*f^3*g*n*x^2 + 5*b*e^5*f^4*n*x + (5*b*d*e^4*f^4 - 10*b*d^2*e^3*f
^3*g + 10*b*d^3*e^2*f^2*g^2 - 5*b*d^4*e*f*g^3 + b*d^5*g^4)*n)*log(e*x + d) - 60*(b*e^5*g^4*x^5 + 5*b*e^5*f*g^3
*x^4 + 10*b*e^5*f^2*g^2*x^3 + 10*b*e^5*f^3*g*x^2 + 5*b*e^5*f^4*x)*log(c))/e^5

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 568 vs. \(2 (153) = 306\).

Time = 2.17 (sec) , antiderivative size = 568, normalized size of antiderivative = 3.19 \[ \int (f+g x)^4 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx=\begin {cases} a f^{4} x + 2 a f^{3} g x^{2} + 2 a f^{2} g^{2} x^{3} + a f g^{3} x^{4} + \frac {a g^{4} x^{5}}{5} + \frac {b d^{5} g^{4} \log {\left (c \left (d + e x\right )^{n} \right )}}{5 e^{5}} - \frac {b d^{4} f g^{3} \log {\left (c \left (d + e x\right )^{n} \right )}}{e^{4}} - \frac {b d^{4} g^{4} n x}{5 e^{4}} + \frac {2 b d^{3} f^{2} g^{2} \log {\left (c \left (d + e x\right )^{n} \right )}}{e^{3}} + \frac {b d^{3} f g^{3} n x}{e^{3}} + \frac {b d^{3} g^{4} n x^{2}}{10 e^{3}} - \frac {2 b d^{2} f^{3} g \log {\left (c \left (d + e x\right )^{n} \right )}}{e^{2}} - \frac {2 b d^{2} f^{2} g^{2} n x}{e^{2}} - \frac {b d^{2} f g^{3} n x^{2}}{2 e^{2}} - \frac {b d^{2} g^{4} n x^{3}}{15 e^{2}} + \frac {b d f^{4} \log {\left (c \left (d + e x\right )^{n} \right )}}{e} + \frac {2 b d f^{3} g n x}{e} + \frac {b d f^{2} g^{2} n x^{2}}{e} + \frac {b d f g^{3} n x^{3}}{3 e} + \frac {b d g^{4} n x^{4}}{20 e} - b f^{4} n x + b f^{4} x \log {\left (c \left (d + e x\right )^{n} \right )} - b f^{3} g n x^{2} + 2 b f^{3} g x^{2} \log {\left (c \left (d + e x\right )^{n} \right )} - \frac {2 b f^{2} g^{2} n x^{3}}{3} + 2 b f^{2} g^{2} x^{3} \log {\left (c \left (d + e x\right )^{n} \right )} - \frac {b f g^{3} n x^{4}}{4} + b f g^{3} x^{4} \log {\left (c \left (d + e x\right )^{n} \right )} - \frac {b g^{4} n x^{5}}{25} + \frac {b g^{4} x^{5} \log {\left (c \left (d + e x\right )^{n} \right )}}{5} & \text {for}\: e \neq 0 \\\left (a + b \log {\left (c d^{n} \right )}\right ) \left (f^{4} x + 2 f^{3} g x^{2} + 2 f^{2} g^{2} x^{3} + f g^{3} x^{4} + \frac {g^{4} x^{5}}{5}\right ) & \text {otherwise} \end {cases} \]

[In]

integrate((g*x+f)**4*(a+b*ln(c*(e*x+d)**n)),x)

[Out]

Piecewise((a*f**4*x + 2*a*f**3*g*x**2 + 2*a*f**2*g**2*x**3 + a*f*g**3*x**4 + a*g**4*x**5/5 + b*d**5*g**4*log(c
*(d + e*x)**n)/(5*e**5) - b*d**4*f*g**3*log(c*(d + e*x)**n)/e**4 - b*d**4*g**4*n*x/(5*e**4) + 2*b*d**3*f**2*g*
*2*log(c*(d + e*x)**n)/e**3 + b*d**3*f*g**3*n*x/e**3 + b*d**3*g**4*n*x**2/(10*e**3) - 2*b*d**2*f**3*g*log(c*(d
 + e*x)**n)/e**2 - 2*b*d**2*f**2*g**2*n*x/e**2 - b*d**2*f*g**3*n*x**2/(2*e**2) - b*d**2*g**4*n*x**3/(15*e**2)
+ b*d*f**4*log(c*(d + e*x)**n)/e + 2*b*d*f**3*g*n*x/e + b*d*f**2*g**2*n*x**2/e + b*d*f*g**3*n*x**3/(3*e) + b*d
*g**4*n*x**4/(20*e) - b*f**4*n*x + b*f**4*x*log(c*(d + e*x)**n) - b*f**3*g*n*x**2 + 2*b*f**3*g*x**2*log(c*(d +
 e*x)**n) - 2*b*f**2*g**2*n*x**3/3 + 2*b*f**2*g**2*x**3*log(c*(d + e*x)**n) - b*f*g**3*n*x**4/4 + b*f*g**3*x**
4*log(c*(d + e*x)**n) - b*g**4*n*x**5/25 + b*g**4*x**5*log(c*(d + e*x)**n)/5, Ne(e, 0)), ((a + b*log(c*d**n))*
(f**4*x + 2*f**3*g*x**2 + 2*f**2*g**2*x**3 + f*g**3*x**4 + g**4*x**5/5), True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 393 vs. \(2 (164) = 328\).

Time = 0.21 (sec) , antiderivative size = 393, normalized size of antiderivative = 2.21 \[ \int (f+g x)^4 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx=\frac {1}{5} \, b g^{4} x^{5} \log \left ({\left (e x + d\right )}^{n} c\right ) + \frac {1}{5} \, a g^{4} x^{5} + b f g^{3} x^{4} \log \left ({\left (e x + d\right )}^{n} c\right ) + a f g^{3} x^{4} + 2 \, b f^{2} g^{2} x^{3} \log \left ({\left (e x + d\right )}^{n} c\right ) + 2 \, a f^{2} g^{2} x^{3} - b e f^{4} n {\left (\frac {x}{e} - \frac {d \log \left (e x + d\right )}{e^{2}}\right )} + \frac {1}{300} \, b e g^{4} n {\left (\frac {60 \, d^{5} \log \left (e x + d\right )}{e^{6}} - \frac {12 \, e^{4} x^{5} - 15 \, d e^{3} x^{4} + 20 \, d^{2} e^{2} x^{3} - 30 \, d^{3} e x^{2} + 60 \, d^{4} x}{e^{5}}\right )} - \frac {1}{12} \, b e f g^{3} n {\left (\frac {12 \, d^{4} \log \left (e x + d\right )}{e^{5}} + \frac {3 \, e^{3} x^{4} - 4 \, d e^{2} x^{3} + 6 \, d^{2} e x^{2} - 12 \, d^{3} x}{e^{4}}\right )} + \frac {1}{3} \, b e f^{2} g^{2} n {\left (\frac {6 \, d^{3} \log \left (e x + d\right )}{e^{4}} - \frac {2 \, e^{2} x^{3} - 3 \, d e x^{2} + 6 \, d^{2} x}{e^{3}}\right )} - b e f^{3} g n {\left (\frac {2 \, d^{2} \log \left (e x + d\right )}{e^{3}} + \frac {e x^{2} - 2 \, d x}{e^{2}}\right )} + 2 \, b f^{3} g x^{2} \log \left ({\left (e x + d\right )}^{n} c\right ) + 2 \, a f^{3} g x^{2} + b f^{4} x \log \left ({\left (e x + d\right )}^{n} c\right ) + a f^{4} x \]

[In]

integrate((g*x+f)^4*(a+b*log(c*(e*x+d)^n)),x, algorithm="maxima")

[Out]

1/5*b*g^4*x^5*log((e*x + d)^n*c) + 1/5*a*g^4*x^5 + b*f*g^3*x^4*log((e*x + d)^n*c) + a*f*g^3*x^4 + 2*b*f^2*g^2*
x^3*log((e*x + d)^n*c) + 2*a*f^2*g^2*x^3 - b*e*f^4*n*(x/e - d*log(e*x + d)/e^2) + 1/300*b*e*g^4*n*(60*d^5*log(
e*x + d)/e^6 - (12*e^4*x^5 - 15*d*e^3*x^4 + 20*d^2*e^2*x^3 - 30*d^3*e*x^2 + 60*d^4*x)/e^5) - 1/12*b*e*f*g^3*n*
(12*d^4*log(e*x + d)/e^5 + (3*e^3*x^4 - 4*d*e^2*x^3 + 6*d^2*e*x^2 - 12*d^3*x)/e^4) + 1/3*b*e*f^2*g^2*n*(6*d^3*
log(e*x + d)/e^4 - (2*e^2*x^3 - 3*d*e*x^2 + 6*d^2*x)/e^3) - b*e*f^3*g*n*(2*d^2*log(e*x + d)/e^3 + (e*x^2 - 2*d
*x)/e^2) + 2*b*f^3*g*x^2*log((e*x + d)^n*c) + 2*a*f^3*g*x^2 + b*f^4*x*log((e*x + d)^n*c) + a*f^4*x

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1209 vs. \(2 (164) = 328\).

Time = 0.32 (sec) , antiderivative size = 1209, normalized size of antiderivative = 6.79 \[ \int (f+g x)^4 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx=\text {Too large to display} \]

[In]

integrate((g*x+f)^4*(a+b*log(c*(e*x+d)^n)),x, algorithm="giac")

[Out]

(e*x + d)*b*f^4*n*log(e*x + d)/e + 2*(e*x + d)^2*b*f^3*g*n*log(e*x + d)/e^2 - 4*(e*x + d)*b*d*f^3*g*n*log(e*x
+ d)/e^2 + 2*(e*x + d)^3*b*f^2*g^2*n*log(e*x + d)/e^3 - 6*(e*x + d)^2*b*d*f^2*g^2*n*log(e*x + d)/e^3 + 6*(e*x
+ d)*b*d^2*f^2*g^2*n*log(e*x + d)/e^3 + (e*x + d)^4*b*f*g^3*n*log(e*x + d)/e^4 - 4*(e*x + d)^3*b*d*f*g^3*n*log
(e*x + d)/e^4 + 6*(e*x + d)^2*b*d^2*f*g^3*n*log(e*x + d)/e^4 - 4*(e*x + d)*b*d^3*f*g^3*n*log(e*x + d)/e^4 + 1/
5*(e*x + d)^5*b*g^4*n*log(e*x + d)/e^5 - (e*x + d)^4*b*d*g^4*n*log(e*x + d)/e^5 + 2*(e*x + d)^3*b*d^2*g^4*n*lo
g(e*x + d)/e^5 - 2*(e*x + d)^2*b*d^3*g^4*n*log(e*x + d)/e^5 + (e*x + d)*b*d^4*g^4*n*log(e*x + d)/e^5 - (e*x +
d)*b*f^4*n/e - (e*x + d)^2*b*f^3*g*n/e^2 + 4*(e*x + d)*b*d*f^3*g*n/e^2 - 2/3*(e*x + d)^3*b*f^2*g^2*n/e^3 + 3*(
e*x + d)^2*b*d*f^2*g^2*n/e^3 - 6*(e*x + d)*b*d^2*f^2*g^2*n/e^3 - 1/4*(e*x + d)^4*b*f*g^3*n/e^4 + 4/3*(e*x + d)
^3*b*d*f*g^3*n/e^4 - 3*(e*x + d)^2*b*d^2*f*g^3*n/e^4 + 4*(e*x + d)*b*d^3*f*g^3*n/e^4 - 1/25*(e*x + d)^5*b*g^4*
n/e^5 + 1/4*(e*x + d)^4*b*d*g^4*n/e^5 - 2/3*(e*x + d)^3*b*d^2*g^4*n/e^5 + (e*x + d)^2*b*d^3*g^4*n/e^5 - (e*x +
 d)*b*d^4*g^4*n/e^5 + (e*x + d)*b*f^4*log(c)/e + 2*(e*x + d)^2*b*f^3*g*log(c)/e^2 - 4*(e*x + d)*b*d*f^3*g*log(
c)/e^2 + 2*(e*x + d)^3*b*f^2*g^2*log(c)/e^3 - 6*(e*x + d)^2*b*d*f^2*g^2*log(c)/e^3 + 6*(e*x + d)*b*d^2*f^2*g^2
*log(c)/e^3 + (e*x + d)^4*b*f*g^3*log(c)/e^4 - 4*(e*x + d)^3*b*d*f*g^3*log(c)/e^4 + 6*(e*x + d)^2*b*d^2*f*g^3*
log(c)/e^4 - 4*(e*x + d)*b*d^3*f*g^3*log(c)/e^4 + 1/5*(e*x + d)^5*b*g^4*log(c)/e^5 - (e*x + d)^4*b*d*g^4*log(c
)/e^5 + 2*(e*x + d)^3*b*d^2*g^4*log(c)/e^5 - 2*(e*x + d)^2*b*d^3*g^4*log(c)/e^5 + (e*x + d)*b*d^4*g^4*log(c)/e
^5 + (e*x + d)*a*f^4/e + 2*(e*x + d)^2*a*f^3*g/e^2 - 4*(e*x + d)*a*d*f^3*g/e^2 + 2*(e*x + d)^3*a*f^2*g^2/e^3 -
 6*(e*x + d)^2*a*d*f^2*g^2/e^3 + 6*(e*x + d)*a*d^2*f^2*g^2/e^3 + (e*x + d)^4*a*f*g^3/e^4 - 4*(e*x + d)^3*a*d*f
*g^3/e^4 + 6*(e*x + d)^2*a*d^2*f*g^3/e^4 - 4*(e*x + d)*a*d^3*f*g^3/e^4 + 1/5*(e*x + d)^5*a*g^4/e^5 - (e*x + d)
^4*a*d*g^4/e^5 + 2*(e*x + d)^3*a*d^2*g^4/e^5 - 2*(e*x + d)^2*a*d^3*g^4/e^5 + (e*x + d)*a*d^4*g^4/e^5

Mupad [B] (verification not implemented)

Time = 1.47 (sec) , antiderivative size = 526, normalized size of antiderivative = 2.96 \[ \int (f+g x)^4 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx=x\,\left (\frac {5\,a\,e\,f^4+20\,a\,d\,f^3\,g-5\,b\,e\,f^4\,n}{5\,e}-\frac {d\,\left (\frac {d\,\left (\frac {d\,\left (\frac {g^3\,\left (a\,d\,g+4\,a\,e\,f-b\,e\,f\,n\right )}{e}-\frac {d\,g^4\,\left (5\,a-b\,n\right )}{5\,e}\right )}{e}-\frac {2\,f\,g^2\,\left (2\,a\,d\,g+3\,a\,e\,f-b\,e\,f\,n\right )}{e}\right )}{e}+\frac {2\,f^2\,g\,\left (3\,a\,d\,g+2\,a\,e\,f-b\,e\,f\,n\right )}{e}\right )}{e}\right )-x^3\,\left (\frac {d\,\left (\frac {g^3\,\left (a\,d\,g+4\,a\,e\,f-b\,e\,f\,n\right )}{e}-\frac {d\,g^4\,\left (5\,a-b\,n\right )}{5\,e}\right )}{3\,e}-\frac {2\,f\,g^2\,\left (2\,a\,d\,g+3\,a\,e\,f-b\,e\,f\,n\right )}{3\,e}\right )+x^4\,\left (\frac {g^3\,\left (a\,d\,g+4\,a\,e\,f-b\,e\,f\,n\right )}{4\,e}-\frac {d\,g^4\,\left (5\,a-b\,n\right )}{20\,e}\right )+\ln \left (c\,{\left (d+e\,x\right )}^n\right )\,\left (b\,f^4\,x+2\,b\,f^3\,g\,x^2+2\,b\,f^2\,g^2\,x^3+b\,f\,g^3\,x^4+\frac {b\,g^4\,x^5}{5}\right )+x^2\,\left (\frac {d\,\left (\frac {d\,\left (\frac {g^3\,\left (a\,d\,g+4\,a\,e\,f-b\,e\,f\,n\right )}{e}-\frac {d\,g^4\,\left (5\,a-b\,n\right )}{5\,e}\right )}{e}-\frac {2\,f\,g^2\,\left (2\,a\,d\,g+3\,a\,e\,f-b\,e\,f\,n\right )}{e}\right )}{2\,e}+\frac {f^2\,g\,\left (3\,a\,d\,g+2\,a\,e\,f-b\,e\,f\,n\right )}{e}\right )+\frac {g^4\,x^5\,\left (5\,a-b\,n\right )}{25}+\frac {\ln \left (d+e\,x\right )\,\left (b\,n\,d^5\,g^4-5\,b\,n\,d^4\,e\,f\,g^3+10\,b\,n\,d^3\,e^2\,f^2\,g^2-10\,b\,n\,d^2\,e^3\,f^3\,g+5\,b\,n\,d\,e^4\,f^4\right )}{5\,e^5} \]

[In]

int((f + g*x)^4*(a + b*log(c*(d + e*x)^n)),x)

[Out]

x*((5*a*e*f^4 + 20*a*d*f^3*g - 5*b*e*f^4*n)/(5*e) - (d*((d*((d*((g^3*(a*d*g + 4*a*e*f - b*e*f*n))/e - (d*g^4*(
5*a - b*n))/(5*e)))/e - (2*f*g^2*(2*a*d*g + 3*a*e*f - b*e*f*n))/e))/e + (2*f^2*g*(3*a*d*g + 2*a*e*f - b*e*f*n)
)/e))/e) - x^3*((d*((g^3*(a*d*g + 4*a*e*f - b*e*f*n))/e - (d*g^4*(5*a - b*n))/(5*e)))/(3*e) - (2*f*g^2*(2*a*d*
g + 3*a*e*f - b*e*f*n))/(3*e)) + x^4*((g^3*(a*d*g + 4*a*e*f - b*e*f*n))/(4*e) - (d*g^4*(5*a - b*n))/(20*e)) +
log(c*(d + e*x)^n)*((b*g^4*x^5)/5 + b*f^4*x + 2*b*f^2*g^2*x^3 + 2*b*f^3*g*x^2 + b*f*g^3*x^4) + x^2*((d*((d*((g
^3*(a*d*g + 4*a*e*f - b*e*f*n))/e - (d*g^4*(5*a - b*n))/(5*e)))/e - (2*f*g^2*(2*a*d*g + 3*a*e*f - b*e*f*n))/e)
)/(2*e) + (f^2*g*(3*a*d*g + 2*a*e*f - b*e*f*n))/e) + (g^4*x^5*(5*a - b*n))/25 + (log(d + e*x)*(b*d^5*g^4*n + 5
*b*d*e^4*f^4*n + 10*b*d^3*e^2*f^2*g^2*n - 5*b*d^4*e*f*g^3*n - 10*b*d^2*e^3*f^3*g*n))/(5*e^5)